SMD Power Inductor NR - 4020-Series (Ferrite)

Features & Application

· Mounting on the surface of NR inductors has high power current sensing.

· NR inductors are small in size and are miniaturized products,

but the chip inductors have high quality, huge storage capacity and low resistance characteristics

· Surface mount high power inductors.

 \cdot Reel packaging is available for automatic surface mounting.

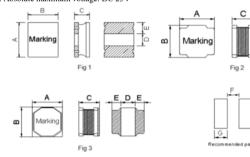
· It has the characteristics of high Q value and low impedance

Low magnetic leakage, low direct resistance, high current resistance and a series of features.

It is widely used in notebook computers, desktop computers, servers, plug-ins,

TVs, smart homes, LED lighting, automotive products, wireless remote control systems,

low-voltage power supply modules and other electronic equipment.

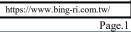

 \bigstar When ordering, please check part number

Part Number	Inductance @1MHz,0.25V (uH)	DCR (Max) (Ω)	Isat (Max.) (A)	Irms (Max.) (A)	SRF MHz (min)
FNR4020-1R0N4.78A	1.0±30%	0.029	4.78	2.15	75
FNR4020-1R5N4.45A	1.5±30%	0.035	4.45	1.98	71
FNR4020-2R2N3.4A	2.2±30%	0.04	3.4	1.85	49
FNR4020-3R3M3.2A	3.3±20%	0.07	3.2	1.4	44
FNR4020-4R7M2.35A	4.7±20%	0.075	2.35	1.34	42
FNR4020-5R6M2.2A	5.6±20%	0.09	2.2	1.22	30
FNR4020-6R8M2A	6.8±20%	0.125	2	1.04	33
FNR4020-8R2M1.75A	8.2±20%	0.125	1.75	1.04	27
FNR4020-100M1.6A	10±20%	0.165	1.6	0.9	26
FNR4020-150M1.35A	15±20%	0.23	1.35	0.77	24
FNR4020-220M1.05A	22±20%	0.35	1.05	0.62	15
FNR4020-330M0.85A	33±20%	0.55	0.85	0.49	11
FNR4020-470M0.74A	47±20%	0.71	0.74	0.44	10
FNR4020-560M0.66A	56±20%	0.8	0.66	0.41	10
FNR4020-680M0.61A	68±20%	1.06	0.61	0.36	7.7
1. Isat: DC current at which the inducta	nce drops approximat	e 30% from its	s value withou	it current;	

2. Irms: DC current that causes the temperature rise ($\triangle T = 40^{\circ}$ C) from 25°C ambient;

3. Operating Temperature : $-40^{\circ}C \sim +125^{\circ}C$;

4. Absolute maximum voltage: DC 25V


Dimer	isions
А	$4.00{\pm}0.20$
В	$4.00{\pm}0.20$
С	2.00 max
D	1.60±0.3
Е	1.20±0.3
F	1.40 typ
G	1.30 typ
Н	3.70 typ
Fi	g 3
unit	: mm

DE

Impedance/Inductance/Q/	LCR Angilent E4991A
Resistance DC	Chroma 16502
Current per winding that causes a 20°C ris	se from 25°C ambient
Electrical specifications at 25°C	
Weight 110–154 mg.	
Packaging 3000/13 // reel; Plastic tape: 1	2 mm wide.

Packaging will different, accroding the various chip size.

les-us@bing-ri.com.tw les-tw@bing-ri.com.tw
les-tw@bing-ri.com.tw
les-cn@bing-ri.com.tw
les-jp@bing-ri.com.tw
cial Website :

SMD Power Inductor NR - 4020-Series (Ferrite)

GENERAL CHARACTERISTICS

1. Operating temperature range: $-40 \text{ TO} + 125 \degree C$ (Includes temperature when the coil is heated)

2. External appearance: On visual inspection, the coil has no external defects.

3. Terminal strength: After soldering. Between copper plate and terminals of coil. Push in two directions of X.Ywithstanding at below conditions.

Terminal should not peel off. (refer to figure at right) 0.5kg Min -4020

4. Insulating resistance: Over 100M Ω at 100V D.C. between coil and co

5. Dielectric strength: No dielectric breakdown at 100V D.C. for 1 minute between coil and core

6. Temperature characteristics: Inductance coefficient (0~2,000)x10-6/ ($^\circ\!C$ -25~+80). $^\circ\!C$, inductance deviation within±5.0%, after 96 hours.

7. Humidity characteristics(Moisture Resistance): Inductance deviation within $\pm 5\%$, after 96 hours in 90~95% relative humidity at 40 ± 2 and 1 hour drying under normal condition.

8. Vibration resistance: Inductance deviation within $\pm 5\%$, after vibration for 1 hour. In each of three orientations at sweep vibration (10~55~10 Hz) with 1.5mm P-P amplitudes.

9. Shock resistance: Inductance deviation within $\pm 5\%$, after being dropped once with 981 m/s²

(100G) shock attitude upon a rubber block method shock testing machine, in three different

10. Resistance to Soldering Heat: 260, 10 seconds(See attached recommend reflow)

11. Storage environment: Storage condition: Temperature Range: $10 \sim 35$ (Generally: $21 \sim 31$),

Humidity Range: $50\% \sim 80\%$ RH (Generally: $65\% \sim 75\%)$; Transportation condition:

Temperature Range:-35 ~ 85 , Humidity Range: 50% $\sim 95\%$ RH

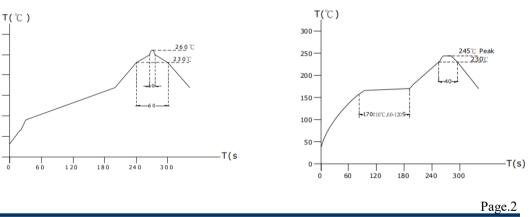
12. Use components within 12 months. If 12 months or more have elapsed, check soldarability before use. 13. Reflow profile recommend:

Lead-free heat en duran ce test

300

250

200


150

100

5.0

0

Lead-free the recommended reflow condition

