SMD Power Inductor NR - 6020-Series (Ferrite)

Features & Application

· Mounting on the surface of NR inductors has high power current sensing.

· NR inductors are small in size and are miniaturized products,

but the chip inductors have high quality, huge storage capacity and low resistance characteristics

· Surface mount high power inductors.

 \cdot Reel packaging is available for automatic surface mounting.

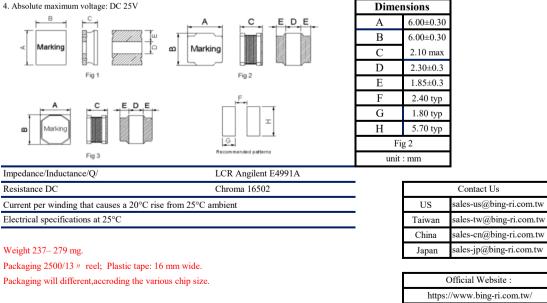
· It has the characteristics of high Q value and low impedance

Low magnetic leakage, low direct resistance, high current resistance and a series of features.

It is widely used in notebook computers, desktop computers, servers, plug-ins,

TVs, smart homes, LED lighting, automotive products, wireless remote control systems,

low-voltage power supply modules and other electronic equipment.


 \bigstar When ordering, please check part number

Part Number	Inductance @1MHz,0.25V (uH)	DCR (Max) (Ω)	Isat (Max.) (A)	Irms (Max.) (A)	SRF MHz (min)
FNR6020-R68N6.55A	0.68±30%	0.017	6.55	3.8	115
FNR6020-R82N5.3A	0.82±30%	0.017	5.3	3.8	110
FNR6020-1R0N4.15A	1.0±30%	0.02	4.15	3.5	100
FNR6020-1R5N4.25A	1.5±30%	0.022	4.25	3.2	79
FNR6020-1R8N4.85A	1.8±30%	0.028	4.85	2.75	68
FNR6020-2R2N3.75A	2.2±30%	0.028	3.75	2.75	61
FNR6020-3R3N3.15A	3.3±30%	0.035	3.15	2.6	51
FNR6020-3R9N3.25A	3.9±30%	0.049	3.25	2.1	45
FNR6020-4R7M3A	4.7±20%	0.058	3	2	41
FNR6020-5R6M2.4A	5.6±20%	0.058	2.4	1.9	36
FNR6020-6R8M2.2A	6.8±20%	0.079	2.2	1.8	31
FNR6020-8R2M2.1A	8.2±20%	0.105	2.1	1.4	27
FNR6020-100M1.75A	10±20%	0.105	1.75	1.4	27
FNR6020-120M0.145A	12±20%	0.12	1.45	1.3	25
FNR6020-150M1.2A	15±20%	0.145	1.2	1.2	21
FNR6020-180M1.2A	18±20%	0.18	1.2	1.08	18
FNR6020-220M1.05A	22±20%	0.204	1.05	1	16
FNR6020-330M0.95A	33±20%	0.3	0.95	0.84	11
FNR6020-470M0.7A	47±20%	0.43	0.7	0.8	10

2. Irms: DC current that causes the temperature rise ($\triangle T = 40^{\circ}C$) from 25°C ambient;

3. Operating Temperature : $-40^{\circ}C \sim +125^{\circ}C$;

4. Absolute maximum voltage: DC 25V

Page.1

2020/1/1

BINGRI TECH

SMD Power Inductor NR - 6020-Series (Ferrite)

GENERAL CHARACTERISTICS

1. Operating temperature range: $-40 \text{ TO} + 125 \degree C$ (Includes temperature when the coil is heated)

2. External appearance: On visual inspection, the coil has no external defects.

3. Terminal strength: After soldering. Between copper plate and terminals of coil. Push in two directions of X.Ywithstanding at below conditions.

Terminal should not peel off. (refer to figure at right) 0.8kg Min -6020

4. Insulating resistance: Over 100M Ω at 100V D.C. between coil and co

5. Dielectric strength: No dielectric breakdown at 100V D.C. for 1 minute between coil and core

6. Temperature characteristics: Inductance coefficient (0~2,000)x10-6/ ($^{\circ}C$ -25~+80). $^{\circ}C$, inductance deviation within±5.0%, after 96 hours.

7. Humidity characteristics(Moisture Resistance): Inductance deviation within $\pm 5\%$, after 96 hours in 90~95% relative humidity at 40 ± 2 and 1 hour drying under normal condition.

8. Vibration resistance: Inductance deviation within $\pm 5\%$, after vibration for 1 hour. In each of three orientations at sweep vibration (10~55~10 Hz) with 1.5mm P-P amplitudes.

9. Shock resistance: Inductance deviation within $\pm 5\%$, after being dropped once with 981 m/s²

(100G) shock attitude upon a rubber block method shock testing machine, in three different

10. Resistance to Soldering Heat: 260, 10 seconds(See attached recommend reflow)

11. Storage environment: Storage condition: Temperature Range: $10 \sim 35$ (Generally: $21 \sim 31$),

Humidity Range: $50\% \sim 80\%$ RH (Generally: $65\% \sim 75\%)$; Transportation condition:

Temperature Range:-35 ~ 85 , Humidity Range: 50% $\sim 95\%$ RH

12. Use components within 12 months. If 12 months or more have elapsed, check soldarability before use. 13. Reflow profile recommend:

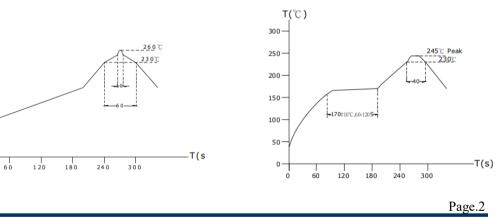
Lead-free heat en duran ce test

T(°C)

300

250

200


150

100

5.0

0

Lead-free the recommended reflow condition

